Acid-promoted isomerisation of 1-acceptor-1-sulfenyl-substituted 2 -vinylcyclopropanes with $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond fission and novel 1,5 -sulfenyl rearrangement

Tetsuo Iwama, H arutoshi M atsumoto and Tadashi Kataoka*
Gifu P harmaceutical U niversity, 6-1, M itahora-higashi 5-chome, Gifu 502, J apan

Abstract

1-A cceptor-1-sulfenyl-substituted vinylcyclopropanes 1 undergo $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond fission and 1,5-sulfenyl rearrangement to give 6 -sulfenyl- $\alpha, \beta ; \gamma, \delta$-unsaturated carboxylic esters and nitriles 4 by treatment with acid. The reactions proceed smoothly by use of a sulfonic acid such asp-TsOH $\cdot \mathrm{H}_{2} \mathbf{O}, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ etc. in a non-polar solvent. The results, obtained from reactions of compounds 12 and 16 , imply that the $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond cleavage and deprotonation from the C^{2}-methyl group of substrates 1 occur via a concerted process. The cross-over experiment showed that the 1,5 -sulfenyl shift proceeds intermolecularly. Addition of a catalytic amount of $\mathrm{m}-\mathrm{M} \mathrm{eC}{ }_{6} \mathrm{H}_{4} \mathrm{SH}$ improves the yield of the rearranged product 4 c .

Introduction

The vinylcyclopropane unit, containing the cyclopropane ring ${ }^{1}$ and its associated strain energy, is subject to a variety of chemical transformations. ${ }^{2}$ Although various types of vinylcyclopropanes have been utilised for the synthesis of complex molecules, 1-acceptor-1-sulfenyl-substituted vinylcyclopropanes have received considerably less attention. ${ }^{3}$ We therefore intended to explore the novel transformations of 1-acceptor-1-sulfenyl-substituted 2 -vinylcyclopropanes. There are several reports of the transformations of 1 -acceptor-substituted 2 vinylcyclopropanes, mainly chrysanthemic acid and its derivatives, with proton acids or Lewis acids. ${ }^{4}$ These papers describe two types of reactions: (i) γ-lactonisation of vinylcyclopropanecarboxylic acids and its esters ${ }^{4 \mathrm{a}-\mathrm{d}}$ and (ii) diene formation following $\mathrm{C}^{2}-\mathrm{C}^{3}$ bond fission. ${ }^{4 \mathrm{~d} \mathrm{~h}}$ In the latter case, reactions of chrysanthemic acid and its derivatives under acidic conditions proceed via protonation at the vinylic moiety. Recently we reported that $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond fission and 1,5 -sulfenyl rearrangement takes place on treatment of 1 -acceptor-1-sulfenylsubstituted 2 -vinylcyclopropanes with an acid. ${ }^{5}$ In this study, dienes $\mathbf{2 a}$ and $\mathbf{3 a}$, but not $\mathbf{5}$, were obtained as minor products from compound la via protonation at the carboxy group and subsequent $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond fission (Scheme 1, routeb). These types of dienes could not be formed from the similar mechanism described in previous papers, ${ }^{\text {dd-h }}$ namely, route a in Scheme 1. This different protonation would be achieved with the aid of the electromeric effect of the sulfur atom. The 1,5 -sulfenyl shift probably proceeds via the diene 3a. There has only been one reported example of a 1,5 -alkylthio shift catalysed by a base; ${ }^{6}$ our finding, however, is the first example of an acid-promoted 1,5 -sulfenyl shift. We now present a full account of our work in this area, including a mechanistic study of the $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond cleavage and the 1,5 -sulfenyl shift.

1-A cceptor-1-sulfenyl-substituted 2-vinylcyclopropanes 1 were synthesized as shown in Scheme 2. A sulfide 6 was chlorinated with N -chlorosuccinimide (NCS) in CCl_{4}. The resultant α-chloro sulfide $\mathbf{7}$ reacted with a diene in the presence of SnCl_{4} to form a sulfonium salt intermediate 8 . The sulfonium salt 8 , without isolation, was subsequently treated with $\mathrm{Et}_{3} \mathrm{~N}$ to give a 1-acceptor-1-sulfenyl-substituted 2 -vinylcyclopropane 1 via $[2,3]$ sigmatropic rearrangement of the ylide $9 .{ }^{3}$ The relative configuration of compound $\mathbf{1 a}$ as a representative for vinylcyclopropyl sulfides 1 was assigned by the nuclear Overhauser effect (NOE) technique ${ }^{5}$ It was revealed that the sulfenyl substituent and the vinyl group are in a cis-configuration. The stereochemistry agreed with the structure proposed from the mechanism of the vinylcyclopropanation reaction.

Scheme 2 Reagents and conditions: i, $\mathrm{NCS}, \mathrm{CCl}_{4}$; ii, diene and SnCl_{4}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{Et}_{3} \mathrm{~N}$

F irstly we investigated the effect of an acid catalyst on reactions of vinylcyclopropyl sulfide 1a (Scheme 3, Table 1). The use of $42 \% \mathrm{HBF}_{4}$ and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a proton acid gave γ lactone 10a as a diastereomeric mixture ($\sim 1: 1$, estimated by ${ }^{1} \mathrm{H}$

Table 1 A cid-promoted isomerisation of vinylcyclopropyl sulfide 1a

Entry	Conditions	Products (\% yield)			
		4a (Z :E) ${ }^{\text {a }}$	$2 a^{\text {b }}$	$3 \mathrm{a}(\mathrm{E})^{\text {b }}$	$10 a^{\text {c }}$
1	$42 \% \mathrm{HBF}_{4}$ (1.0 equiv.), TH F , room temp., 24 h				50
2	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{4}$ (1.0 equiv.), benzene, room temp., 24 h				31
3	$\mathrm{p}-\mathrm{TsOH}$ (0.1 equiv.), benzene, reflux, 18 h	49 (1:3)	24	10	8
4	PPTS (0.1 equiv.), benzene, reflux, 20 h	35 (1:1)	47		5
5	CSA (0.1 equiv.), benzene, reflux, 20 h	41 (1:1)	49		trace
6	$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ (0.1 equiv.), benzene, reflux, 20 h	41 (2:3)	trace	11	14
7	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (1.0 equiv.), benzene, reflux, 14 h	$4(2: 3)$			31
8	$\mathrm{p}-\mathrm{TsOH}$ (0.1 equiv.), EtOH , reflux, 9 h				$60^{\text {d }}$
9	p -TsOH (0.1 equiv.), DM F , $80{ }^{\circ} \mathrm{C}, 9 \mathrm{~h}$				$15^{\text {d }}$
10	$\mathrm{p}-\mathrm{TsOH}$ (0.1 equiv.), THF, reflux, 9 h	25 (1:1)	25		43
11	$\mathrm{p}-\mathrm{TsOH}$ (0.1 equiv.), ($\left.\mathrm{ClCH}_{2}\right)_{2}$, reflux, 9 h				$26^{\text {d }}$

${ }^{\text {a }} \mathrm{Z}$: E ratio was determined by ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectroscopy. ${ }^{\mathrm{b}}$ I somers $\mathbf{2}$ and $\mathbf{3}$ were isolated as an inseparable mixture. Y ields were estimated by ${ }^{1} \mathrm{H} N \mathrm{~N} R$ spectroscopy. ${ }^{\text {c }}$ D iastereomeric mixture (~ 1 : 1, estimated by ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectroscopy). ${ }^{\text {d } \mathrm{A}}$ considerable amount of (PhS) ${ }_{2}$ was obtained, in $36-41 \%$ yield.

2

10
a; $E W G=\mathrm{CO}_{2} \mathrm{Me}, R^{1}=P h, R^{2}=M e$
b; EWG $=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{1}=p-\mathrm{MeC} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{Me}$
c; EWG $=\mathrm{CO}_{2} M e, R^{1}=m-M e C_{6} \mathrm{H}_{4}, R^{2}=M e$
d; $E W G=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{1}=\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{Me}$
e; $E W G=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$
f; $E W G=\mathrm{CO}_{2} M e, R^{1}=R^{2}=M e$
g; EWG $=C N, R^{1}=P h, R^{2}=\mathrm{Me}$
h; EWG $=C N, R^{1}=p-C_{C}{ }_{6} H_{4}, R^{2}=M e$
i; $E W G=C N, R^{1}=P h, R^{2}=H$

2a

(E)-3a
Fig. 1

Scheme 3 R eagent: i, acid

NM R spectroscopy) (entries 1 and 2). The $C^{1}-C^{2}$ bond fission and 1,5 -sulfenyl shift efficiently took place using a sulfonic acid such as toluene-p-sulfonic acid monohydrate (p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$), pyridinium toluene-p-sulfonate (PPTS), (+)-camphor-10sulfonic acid (CSA) or $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ in benzene under reflux (entries $3-6$). p-TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$ was the most effective catalyst for the 1,5 -sulfenyl shift (entry 3) and the rearranged diene 4 a was formed in 49% yield as a mixture of geometrical isomers accompanied by an inseparable mixture of the ring-opened dienes $\mathbf{2 a}$ and (E)-3a (the yields were estimated from the intensities of the signals in the ${ }^{1} \mathrm{H} N \mathrm{MR}$ spectrum). $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ as a Lewis acid could not effect $C^{1}-C^{2}$ bond fission, and the $1,5-$ sulfenyl shift predominated giving lactone 10a as the major product (entry 7). N ext, we examined solvent effects on the acidpromoted $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond fission and the 1,5 -sulfenyl rearrangement of compound la with 0.1 mol equiv. of $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$. The best result was obtained by use of benzene, a non-polar solvent, under reflux (entry 3). When the reaction was carried out in EtOH , a polar protic solvent, γ-lactone 10a was formed in 60% yield and no ring-opened diene was obtained (entry 8). Polar aprotic solvents, especially dimethylformamide (D M F) and 1,2dichloroethane, were ineffective for the $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond fission and/ or the 1,5 -sulfenyl shift (entries 9 and 11). Tetrahydrofuran (THF) was less effective than benzene and compound 10a was formed in 43% yield together with open-chain esters $\mathbf{4 a}$ and $\mathbf{2 a}$ both in 25% yield (entry 10). A considerable amount of diphenyl disulfide was obtained ($36-41 \%$) when EtOH, DM F or 1,2-dichloroethane was used as the solvent. The structure of compounds (E)-4a, (Z)-4a, 2a and (E)-3a were determined by ${ }^{1} \mathrm{H}$ N M R spectroscopy and N OE measurements (Fig. 1).

Following our examinations of acid catalysts and solvents, several vinylcyclopropyl sulfides 1a-i were treated with 0.1 or 1.0 mol equiv. of p -TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$ in toluene under reflux (Table 2). Vinylcyclopropyl sulfides, la-e,g-i, carrying an arylthio group, gave 6 -sulfenyl- $\alpha, \beta ; \gamma, \delta$-unsaturated carboxylic esters 4 a e and nitriles 4 g - i in moderate to good yields, respectively. The rearranged dienes $4 e$ and $4 i$ were obtained as a single isomer. The rearranged products $\mathbf{4 g}$ - \mathbf{i} having a cyano group were less stable than those bearing an ester group. A slight substituent effect of an arylthio group was observed (entries 1-4). The yield of compound 4 d with an electron-withdrawing chloro substituent was lower than that of compound $\mathbf{4 a}$ and a small amount of ring-opened diene 3d was also obtained. In the reaction of compound $\mathbf{1 b}$ bearing an electron-donating para-methyl group, product $\mathbf{3 b}$ was not formed because the rate of the arylthio shift of $\mathbf{3 b}$ was faster than those of $\mathbf{3 a}$ and $\mathbf{3 c}$. A similar result was obtained from the reaction of compound $\mathbf{1 c}$ with an electrondonating meta-methyl group. The methylthio group was ineffective for $C^{1}-C^{2}$ bond cleavage and for the 1,5-methylthio shift (entry 5), and consequently no rearranged diene was isolated. We investigated an improved method for the 1,5 -sulfenyl shift (entry 10). In the reaction of compound $\mathbf{1 c}$ bearing a metamethylphenylthio group with 0.1 mol equiv. of $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, addition of a catalytic amount of $\mathrm{m}-\mathrm{M} \mathrm{eC}{ }_{6} \mathrm{H}_{4} \mathrm{SH}$, corresponding to the sulfenyl group of substrate $\mathbf{1 c}$, and lowered reaction temperature (refluxing in benzene) as well as reaction time (8 h) increased the yield of the rearranged diene $\mathbf{4 c}$ to 83% (compared with entry 3). This finding showed that a thiol catalysed the 1,5 -sulfenyl rearrangement.
It is unreasonable that the $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond is cleaved by protonation on the olefinic moiety because such a mechanism allows formation of a different type of diene as shown in Scheme 1.

Table 2 Reactions of vinylcyclopropyl sulfides $\mathbf{1}$ with $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$

Entry	Compd.	$\begin{aligned} & \mathrm{p}-\mathrm{TsOH} \\ & \text { (mol equiv.) } \end{aligned}$	Time (t/h)	Products (\% yield)			
				4a (Z:E) ${ }^{\text {a }}$	$2^{\text {b }}$	$3(Z: E)^{\text {b }}$	$10^{\text {c }}$
1	1a	0.1	12	67 (1:3)	8	trace (E)	5
2	1b	0.1	12	75 (1:3)	5		8
3	1c	0.1	12	68 (1:3)	6		4
4	1d	0.1	12	63 (1:3)	8	3 (E)	2
5	1 e	0.1	10	60 (E)	7	3 (1:2)	6
6	1 f	1.0	20	complex mi			
7	1 g	1.0	3	60 (1:2)	4		
8	1h	1.0	3	55 (1:3)	3		
9	1 i	1.0	3	$42 \text { (E) }$			
$10^{\text {d }}$	1c	0.1	8	83 (1:4)	5		4

${ }^{\mathrm{a}} \mathrm{Z}$: E ratio was determined by ${ }^{1} \mathrm{H} N \mathrm{MR}$ spectroscopy. ${ }^{\mathrm{b}}$ I somers 2 and $\mathbf{3}$ were isolated as an inseparable mixture. Y ields and $\mathrm{Z}: \mathrm{E}$ ratios were estimated by ${ }^{1} \mathrm{H} N \mathrm{MR}$ spectroscopy. ${ }^{\mathrm{c}} \mathrm{D}$ iastereomeric mixture ($\sim 1: 1$, estimated by ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectroscopy). ${ }^{\text {d }}$ The reaction was carried out in benzene under reflux in the presence of 0.1 mol equiv. of $\mathrm{m}-\mathrm{M} \mathrm{eC}{ }_{6} \mathrm{H}_{4} \mathrm{SH}$

The $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond fission would proceed by protonation on the carboxy group aided by the phenylthio substituent, via three possible pathways (Scheme 4). In the stepwise process, the

Scheme 4

thermodynamically more stable diene 3a would be formed as a major product, rather than isomer 2a, through a cationic intermediate 11. The concerted process follows either or both of two plausible routes: one is deprotonation of H^{a} on the cyclopropane ring to give compound 3 a and the other is deprotonation of H^{b} of the C^{2}-methyl group to form product 2a. Predominant formation of compound 2a rather than isomer 3a (see Tables 1 and 2) suggests that the concerted process with abstraction of the $\mathrm{H}^{\mathbf{b}}$ proton is most likely.

In order to confirm the mechanism of the $C^{1}-C^{2}$ bond cleavage, we carried out reactions of the vinylcyclopropyl sulfide 12 without a C^{2}-methyl group (Scheme 5). No reaction

Scheme 5 Reagents and conditions: i, M ethod A: $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.1$ mol equiv.), benzene, reflux, 20 h ; M ethod B : $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (1.0 mol equiv.), benzene, reflux, 21 h
occurred on treatment of compound $\mathbf{1 2}$ with 0.1 mol equiv. of p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in benzene under reflux for 20 h , although the reaction of compound la proceeded smoothly under similar conditions (see entry 3 in Table 1). The rearranged compound 14 was obtained in 18% yield accompanied by compound 15 (17\%) when 1.0 mol equiv. of $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in benzene was used under reflux for 21 h . Compound $\mathbf{1 5}$ would be formed by isomerisation of an intermediate diene $\mathbf{1 3}$ or by protonation on the vinyl group followed by ring-opening and removal of H^{a} in a similar way to the ring-opening of chrysanthemic acid derivatives. ${ }^{4 d-h}$ If the $C^{1}-C^{2}$ bond cleavage took place via the stepwise process, reactions of compound $\mathbf{1 2}$ should take place more easily than that of compound 1a because of formation of a more stable carbocation intermediate than 11 in Scheme 4. However, reaction of compound $\mathbf{1 2}$ required vigorous conditions. This would exclude the stepwise process. The 2-methyl group is necessary for the smooth ring opening. One of the hydrogens $\left(\mathrm{H}^{\mathrm{b}}\right)$ of the methyl group and C^{1} of the cyclopropane ring are anti-planar (Scheme 4). This geometry works advantageously to effect the concerted process of ring-opening and deprotonation in vinylcyclopropanes 1.

We also examined reactions of vinylcyclopropyl sulfide 16,7 lacking migratory capability by structural demand (Scheme 6,

Scheme 6 Reagents and conditions: i, p-TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$, benzene, reflux
Table 3). Treatment of spirovinylcyclopropane 16 with 0.1 mol equiv. of p -TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$ for 2 h gave dienes 17,18 and 19 in 51,36 and 5% yield, respectively (entry 1). A though the diene 18 was obtained as a single isomer, the geometry has not been confirmed at present. The geometry of compound 19 was determined as being (Z) by applying the additivity rule in the ${ }^{1} \mathrm{H}$ NM R spectrum. ${ }^{8}$ The olefinic proton of product 19 was observed at $\delta 7.53$. Calculated chemical shifts for the (Z)- and (E)isomers are $\delta 7.34$ and 6.66 , respectively. This result suggests that compound 19 exists as the (Z)-isomer. The yield of compound $\mathbf{1 7}$ decreased to 24% and that of isomer 18 increased to 52% when prolonged reaction conditions were used (5 h , entry 2). In the course of reactions with 1.0 mol equiv. of

Table 3 A cid-promoted isomerisation of spirovinylcyclopropane 16 with $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$

| | | | Products (\% yield) | | |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| Entry | p-TsOH
 (mol equiv.) | Time
 (t/h) | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ |
| 1 | 0.1 | 2 | 51 | 36 | 5 |
| 2 | 0.1 | 5 | 24 | 52 | 12 |
| 3 | 1.0 | 2 | 10 | 41 | 20 |
| 4 | 1.0 | 9 | trace | 25 | 33 |
| 5 | 1.0 | 18 | trace | 4 | 48 |

p -TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$, the yield of compound 19 increased with a decrease in the yield of compound 18 (entries 3-5). These results suggest that compound $\mathbf{1 7}$ is first formed by the concerted process with H^{b} abstraction, and that it then isomerises to compound 18 under acidic conditions, which is prevented from undergoing a 1,5 -sulfenyl shift; subsequent isomerisation to the most stable diene 19 ensues.
To determine whether the rearranged dienes 4 were formed by an intermolecular or intramolecular 1,5-sulfenyl shift, we carried out the cross-over reaction of vinylcyclopropanes 1a ($131 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $1 \mathrm{~h}(132 \mathrm{mg}, 0.5 \mathrm{mmol}$) with a catalytic amount of $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ in 5 ml of benzene under reflux (Scheme7). A fter the product was purified by preparative

Scheme 7 Reagents and conditions: i, 0.1 mol equiv. of $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, benzene, reflux, 20 h

TLC (PLC) on silica gel, an inseparable mixture (69 mg) of cross-coupled product 4d and normally rearranged diene 4a, and then (40 mg) of another cross-coupled diene 4 g and non-cross-coupled diene $\mathbf{4}$ h were isolated as the second and third fractions, respectively. Ring-opened dienes $2 \mathrm{a}, \mathrm{h}$ and 3 a were obtained as an inseparable mixture (92 mg) in the first fraction. All the structures of the products were identified in comparison with the ${ }^{1} \mathrm{H} N M R$ spectra of authentic samples, obtained from the reactions shown in Scheme 3. This experiment showed that the 1,5 -sulfenyl shift proceeded intermolecularly. We also carried out the reaction of diene 3a including a trace amount of isomer $\mathbf{2 a}$ (obtained from the reaction of compound 1a with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, Table 1, entry 6) with 0.1 mol equiv. of $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ to give the conjugated diene 4 a in 93% yield (Scheme 8). From these results, a plausible reaction mechanism for the 1,5 -sulfenyl shift is assumed as shown in Scheme 8. Protonation on the sulfur atom of penta-2,4-dienyl sulfide 3a, followed by elimination of thiophenol, gives a cationic intermediate 20. Thiophenol then reacts with the cationic intermediate $\mathbf{2 1}$ at $\mathrm{C}-6$ to provide compound 4 a as a mixture of geometrical isomers. The mechanism was supported by the results of a study into the substituent effects of arylthio groups (see entries 1-4 in Table 2) and by the additive effect of $\mathrm{m}-\mathrm{M} \mathrm{eC}{ }_{6} \mathrm{H}_{4} \mathrm{SH}$ (entry 10 in Table 2).

Scheme 8 Reagents and conditons: i, 0.1 mol equiv. of $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, benzene, reflux, 8 h

Treatment of the diene $2 \mathbf{a}$ with 0.1 mol equiv. of p $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in benzene under reflux for 20 h afforded the rearranged diene 4 a in 29% yield together with 22% of isomerised diene 3a, 4\% of γ-lactone 10a and 33\% recovery of starting material (Scheme 9). From this result, the overall reaction

Scheme 9 Reagents and conditions: i, 0.1 mol equiv. of $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, benzene, reflux, 20 h
pathway for acid-promoted isomerisation of 1-acceptor-1-sulfenyl-substituted 2 -vinylcyclopropanes is proposed as follows. The diene 2 a is formed by $\mathrm{C}^{1-} \mathrm{C}^{2}$ bond fission and abstraction of a C^{2}-methyl proton followed by subsequent isomerisation to compound 3a in acidic conditions. The 1,5sulfenyl rearrangement then takes place to give 6 -sulfenyl$\alpha, \beta ; \gamma, \delta$-unsaturated carboxylic ester 4a. γ-Lactone 10a would be formed by direct lactonisation of compound 1a and by intramolecular 5-exo-trig lactonisation of diene 2a via the corresponding carboxylic acids generated by hydrolysis with p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$. 5 -E ndo-trig lactonisation of compound 3 a is disfavoured according to Baldwin's rules, ${ }^{9}$ and in fact the reaction of compound 3a with p-TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$ produced no γ-lactone (see Scheme 8).
In conclusion, treatment of 1-acceptor-1-sulfenyl-substituted 2 -vinylcyclopropanes with an acid afforded 6 -sulfenyl- $\alpha, \beta ; \gamma, \delta$ unsaturated carboxylic esters and nitriles. Efficient $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond fission and 1,5 -sulfenyl shift occurred when a sulfonic acid such as $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ was used in a non-polar solvent. $\mathrm{C}^{1}-\mathrm{C}^{2}$ bond cleavage would proceed via a concerted process with abstraction of a C^{2}-methyl proton by protonation at the carboxy group with the aid of the sulfur atom. The 1,5 -sulfenyl shift occurred intermolecularly and was accelerated by addition of a catalytic amount of thiol.

Experimental

M ps were obtained with a Yanagimoto micro melting point apparatus and are uncorrected. IR Spectra of solids (KBr) and liquids (NaCl) were recorded on a JA SCO IRA-100 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR Spectra were obtained on a Hitachi

R-20B (60 MHz) or a JEOL GX-270 (270 MHz) or a JEOL EX-400 (400 M Hz) spectrometer with tetramethylsilane as internal standard. ${ }^{13} \mathrm{C}$ NMR Spectra and NOE spectra were run on a JEOL EX-400 spectrometer. J Values are given in Hz. M ass spectra (EI) were measured on a JEOL JM S-D 300 spectrometer with a direct-insertion probe at 70 eV . Elemental analyses of new compounds were performed by a Yanaco CHN CORDER MT-5. All chromatographic isolations were accomplished either by K ieselgel 60 ($70-230$ mesh) for column chromatography or K ieselgel $60 \mathrm{PF}_{254}$ containing gypsum for PLC.

Synthesis of 1-acceptor-1-sulfenyl-substituted 2-vinylcyclopropanes 1 and 12

General procedure. To a stirred solution of sulfide 6 (10 $\mathrm{mmol})$ in $\mathrm{CCl}_{4}\left(20 \mathrm{~cm}^{3}\right)$ was added NCS $(1.335 \mathrm{~g}, 10 \mathrm{mmol})$ in portions at room temperature. A fter 2 h , the precipitate of succinimide was filtered off and the filtrate was evaporated under reduced pressure. $\mathrm{SnCl}_{4}\left(1.35 \mathrm{~cm}^{3}, 11.5 \mathrm{mmol}\right)$ was added to a solution of the resultant α-chloro sulfide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ in the presence of a diene (12 mmol) at $-20^{\circ} \mathrm{C}$ under nitrogen. A fter $45 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}\left(7.0 \mathrm{~cm}^{3}, 50 \mathrm{mmol}\right)$ was added to the reaction mixture at $-20^{\circ} \mathrm{C}$ which was stirred for 30 min at room temperature $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ was added and the precipitate was filtered through Celite. The filtrate was concentrated under reduced pressure (if needed, filtration was carried out two or three times) and the residue was purified by column chromatography on silica gel and eluted with hexane-EtOAc ($20: 1 \longrightarrow 5: 1 \mathrm{v} / \mathrm{v}$) to give a 1-acceptor-1-sulfenyl-substituted 2-vinylcyclopropane 1.

M ethyl 2-isopropenyl-2-methyl-1-(phenylthio)cyclopropane-1carboxylate 1a

76%, Oil (Found: C, 68.45; $\mathrm{H}, 7.05 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires C , $68.67 ; \mathrm{H}, 6.92 \%) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3090$ (cyclopropane), 1720 ($\mathrm{C}=0$), 1645, 985 and 900 (vinyl) and 1250 ($\mathrm{C}-0$); $\delta_{\mathrm{H}}(400$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $1.30(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 1.45 and 2.01 (each $1 \mathrm{H}, \mathrm{d}$, J ab $5.4,3-\mathrm{H}$), 1.88 ($3 \mathrm{H}, \mathrm{s}$, vinylic M e), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.85 and 4.98 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}$) and 7.23-7.28 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 19.7(\mathrm{q}), 21.1(\mathrm{q}), 28.7(\mathrm{t}), 37.4(\mathrm{~s})$, 39.6 (s), 52.8 (q), 114.2 (t), 125.7 (d), 127.7 (d), 128.8 (d), 128.9 (s), 145.1 (s) and 171.9 (s); m/z 262 ($26 \%, \mathrm{M}^{+}$), 153 (17 , M^{+}- PhS) and 43 (100).

M ethyl 2-isopropenyl-2-methyl-1-(4-methylphenylthio)cyclo-propane-1-carboxylate 1b

78\%, Oil (Found: C, 69.4; $\mathrm{H}, 7.4 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$ S requires $\mathrm{C}, 69.53$; $\mathrm{H}, 7.29 \%$); $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3090$ (cyclopropane), 1720 (C=O), 1640, 985 and 900 (vinyl) and $1250(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.28(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.42$ and 1.93 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {AB }} 5$, $3-\mathrm{H}$), 1.87 ($3 \mathrm{H}, \mathrm{s}$, vinylic Me), $2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{ArM} \mathrm{e}$), 3.73 ($3 \mathrm{H}, \mathrm{s}$, OM e), 4.85 and 4.97 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}$), 7.06 and 7.18 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 20.1$ (q), 21.2 (q), 21.4 (q), 28.8 (t), 38.4 (s), 39.8 (s), 53.0 (q), 114.4 (t), 129.0 (d), 129.9 (d), 133.1 (s), 136.3 (s), 145.4 (s) and 172 (s); m/z $276\left(24 \%, \mathrm{M}^{+}\right)$, 153 (54, M ${ }^{+}-\mathrm{M} \mathrm{eC}_{6} \mathrm{H}_{4} \mathrm{~S}$) and 93 (100).

M ethyl 2-isopropenyl-2-methyl-1-(3-methylphenylthio)cyclo-propane-1-carboxylate 1c

62%, Light yellow oil (Found: C, 69.4; H, 7.4\%); $v_{\text {max }}(\mathrm{NaCl}) /$ $\mathrm{cm}^{-1} 3090$ (cyclopropane), 1720 ($\mathrm{C}=0$) , 1640, 985 and 900 (vinyl) and $1250(\mathrm{C}-0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29(3 \mathrm{H}, \mathrm{s}$, 2-M e), 1.45 and 2.01 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ ab $5.4,3-\mathrm{H}), 1.87(3 \mathrm{H}, \mathrm{s}$, vinylic Me), 2.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.85 and 4.97 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}$) , $6.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{ArH}), 7.07(1 \mathrm{H}, \mathrm{s}$, ArH), 7.08 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{ArH}$) and 7.14 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 19.6(\mathrm{q}), 21.0(\mathrm{q}), 21.4(\mathrm{q}), 28.7$ (t$)$, 37.3 (s), 39.5 (s$), 52.8$ (q), 114.1 (t$), 124.5$ (d), 126.6 (d), 128.2 (d), 128.7 (d), 136.5 (s), 138.6 (s), 145.0 (s) and 171.9 (s); m/z 276 ($22 \%, \mathrm{M}^{+}$), $153\left(76, \mathrm{M}^{+}-\mathrm{M} \mathrm{eC}_{6} \mathrm{H}_{4} \mathrm{~S}\right)$ and 93 (100).

M ethyl 1-(4-chlorophenylthio)-2-isopropenyl-2-methyIcyclo-propane-1-carboxylate 1d
59%, Yellow oil (Found: $\mathrm{C}, 60.4 ; \mathrm{H}, 5.8 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClO} \mathrm{C}_{2} \mathrm{~S}$ requires C, 60.70; H, 5.77\%); $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3090$ (cyclopropane), 1725 ($\mathrm{C}=0$) , 1645, 995 and 905 (vinyl) and $1255(\mathrm{C}-0)$; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 1.30(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{M} \mathrm{e}), 1.43$ and 2.01 (each $1 \mathrm{H}, \mathrm{d}$, $J_{\text {AB }} 5.4,3-\mathrm{H}$), 1.87 ($3 \mathrm{H}, \mathrm{s}$, vinylic M e), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), 4.85 and 4.98 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}$) and $7.20(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(400$ $\mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3$) 19.6 (q), 21.0 (q), 28.6 (t), 37.4 (s), 39.6 (s), 52.9 (q), 114.3 (t), 128.8 (d), 129.0 (d), 131.6 (s), 135.3 (s), 144.8 (s) and $171.5(\mathrm{~s}) ; \mathrm{m} / \mathrm{z} 296\left(10 \%, \mathrm{M}^{+}\right), 153\left(48, \mathrm{M}^{+}-\mathrm{CIC}_{6} \mathrm{H}_{4} \mathrm{~S}\right), 93$ (79) and 43 (100).

M ethyl 2-methyl-1-(phenylthio)-2-vinylcyclopropane-1carboxylate 1 e

75%, Light yellow oil (Found: $\mathrm{C}, 67.7 ; \mathrm{H}, 6.6 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 67.70 ; \mathrm{H}, 6.49 \%$); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3100$ (cyclopropane), 1725 ($\mathrm{C}=0$), 1635, 995 and 915 (vinyl) and 1235 ($\mathrm{C}-0$); $\left.\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz;} \mathrm{CDCI})_{3}\right) 1.33(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{M} \mathrm{e}), 1.36$ and 2.06 (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {Ab }} 5,3-\mathrm{H}\right), 3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 5.18(1 \mathrm{H}, \mathrm{d}$, $\left.J_{\text {cis }} 11, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 17, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.01(1 \mathrm{H}$, dd, J 10 and 17, $\mathrm{CH}=\mathrm{CH}_{2}$), $7.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{ArH})$ and 7.217.29 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 17.2$ (q), $28.8(\mathrm{t})$, 33.6 (s$), 38.6$ (s), 52.5 (q), 115.8 (t$), 125.5$ (d), 127.4 (d), 128.6 (d), 136.1 (s), 139.4 (s) and 171.0 (s); $\mathrm{m} / \mathrm{z} 248\left(4 \%, \mathrm{M}^{+}\right.$) and 43 (100).

M ethyl 2-isopropenyl-2-methyl-1-(methylthio)cyclopropane-1carboxylate $1 f$
62%, Oil, bp $90-100^{\circ} \mathrm{C} / 6 \mathrm{mmHg}$ (K ugelrohr) (lit., ${ }^{3 \mathrm{~b}} 65-66^{\circ} \mathrm{C} /$ 1 mmHg).

2-I sopropenyl-2-methyl-1-(phenylthio)cyclopropane-1carbonitrile 1 g

45\%, Yellow oil (Found: C, 73.1; H, 6.7; N, 6.0. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NS}$ requires $\mathrm{C}, 73.32 ; \mathrm{H}, 6.59 ; \mathrm{N}, 6.11 \%) ; v_{\max }\left(\mathrm{NaCl}^{2} / \mathrm{cm}^{-1} 3090\right.$ (cyclopropane), 2225 (CN) and 1640, 1000 and 905 (vinyl); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.54(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.59$ and 1.62 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {AB }} 5.9,3-\mathrm{H}$), 1.82 (3 H , s, vinylic Me e), 4.87 and 5.03 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}$), 7.28-7.37 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.47 (2 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 2$ and $8, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 20.9$ (q), 22.2 (q), 23.7 (s), 31.0 (t), 39.8 (s), 115.6 (t), 120.5 (s), 127.7 (d), 129.1 (d), 130.6 (d), 133.5 (s) and 142.6 (s); m/z 229 ($20 \%, \mathrm{M}^{+}$), 120 (73 , M^{+}- PhS) and 110 (100).

1-(4-C hlorophenylthio)-2-isopropenyl-2-methylcyclopropane-1carbonitrile 1 h

45\%, Yellow oil (Found: C, 63.5; H, 5.3; N, 5.1. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{CIN} \mathrm{S}$ requires $\mathrm{C}, 63.75 ; \mathrm{H}, 5.35 ; \mathrm{N}, 5.31 \%) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3100$ (cyclopropane), 2240 (CN) and 1650, 960 and 915 (vinyl); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.55(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.59$ and 1.63 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {ав }} 5.9,3-\mathrm{H}$), 1.83 (3 H , s, vinylic Me e), 4.89 and 5.04 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}$) and 7.33 and 7.42 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, $\mathrm{ArH}) ; \delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 21.1$ (q), 22.3 (q), $24.0(\mathrm{~s}), 31.1$ (t), 40.1 (s), 115.8 (t), 120.4 (s), 129.5 (d), 132.0 (s), 132.2 (d), 134.2 (s) and 142.5 (s); m/z $263\left(14 \%, \mathrm{M}^{+}\right), 120\left(43, \mathrm{M}^{+}-\mathrm{CIC}_{6} \mathrm{H}_{4} \mathrm{~S}\right)$ and 139 (100).

2-M ethyl-1-(phenylthio)-2-vinylcyclopropane-1-carbonitrile 1i 32%, Yellow oil (Found: M^{+}, 215.0775. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NS}$ requires M , 215.0769); $v_{\text {max }}\left(\mathrm{NaCl}^{2} / \mathrm{cm}^{-1} 3090\right.$ (cyclopropane), 2240 (CN) and 1640, 995 and 925 (vinyl); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.53$ and 1.71 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {ab }} 5.9,3-\mathrm{H}$), 1.59 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{M} \mathrm{e}$), 5.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {cis }} 11, \mathrm{CH}=\mathrm{CH}_{2}$), $5.28\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 17, \mathrm{CH}=\mathrm{CH}_{2}\right.$), $5.91\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10\right.$ and $\left.17, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $7.27-7.41(5 \mathrm{H}, \mathrm{m}$, ArH); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 20.1$ (q), 25.0 (s), 29.9 (t), 33.9 (s), 117.7 (t), 119.9 (s), 127.5 (d), 129.2 (d), 129.5 (d), 133.1 (s) and 136.8 (s); m/z $215\left(13 \%, \mathrm{M}^{+}\right), 106\left(19, \mathrm{M}^{+}-\mathrm{PhS}\right)$ and 110 (100).

M ethyl 2-(4-chlorophenyl)-2-[1-(4-chlorophenyl)vinyl]-1-(phenylthio)cyclopropane-1-carboxylate 12
$72 \%, N$ eedles (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane), mp $77-78{ }^{\circ} \mathrm{C}$ (Found: C , 65.7; $\mathrm{H}, 4.5 . \mathrm{C}_{25} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 65.94 ; \mathrm{H}, 4.43 \%$); $v_{\text {max }}$ (K Br)/cm ${ }^{-1} 3070$ (cyclopropane), $1730(\mathrm{C}=0$) and $1260(\mathrm{C}-0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.76$ and 2.69 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{AB}} 5,3-\mathrm{H}$), $3.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}\right.$), 5.55 and 5.58 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}$) and 7.14-7.39 ($13 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}(400 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3$) $27.6(\mathrm{t}), 41.0$ (s), 46.1 (s), 52.8 (q), 118.5 (t), 126.5 (d), 128.2 (d), 128.3 (d), 128.8 (d), 128.9 (d), 129.0 (d), 130.4 (d), 133.2 (s), 133.7 (s), 135.5 (s), 137.7 (s), 137.8 (s), 146.0 (s) and 170.1 (s); m/z 454 $\left(2 \%, M^{+}\right), 363$ (79), 139 (100) and 123 (86).

Acid-promoted isomerisation of vinylcyclopropyl sulfides 1,12 and 16

General procedure. A mixture of vinylcyclopropyl sulfide (1 $\mathrm{mmol})$ and $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(19 \mathrm{mg}, 0.1 \mathrm{mmol})$ in an appropriate solvent ($5 \mathrm{~cm}^{3}$) was heated to reflux under nitrogen for an appropriate time. The cooled reaction mixture was poured into saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and the organic layer was separated. The water layer was extracted twice with EtOAc (10 cm^{3}). The organic layer and the extracts were combined, washed with water ($15 \mathrm{~cm}^{3}$), dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure. The residue was separated by PLC on silica gel with hexane-EtOAc ($10: 1 \longrightarrow 5: 1 \mathrm{v} / \mathrm{v}$). Reaction conditions, products and their yields are summarised in Tables 1-3 and Scheme 5.

2($\mathrm{E}, 4 \mathrm{E}$)- and ($2 \mathrm{E}, 4 \mathrm{Z}$)-M ethyl 4,5-dimethyl-6-(phenylthio)hexa-2,4-dienoate 4a

Yellow oil as a mixture of geometrical isomers (Found: C, 68.7; $\mathrm{H}, 7.1 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.\mathrm{C}, 68.67 ; \mathrm{H}, 6.92 \%\right) ; v_{\text {max }}(\mathrm{NaCl}) /$ $\mathrm{cm}^{-1} 1710(\mathrm{C}=0), 1165$ and $1285(\mathrm{C}-0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ (4E)-isomer ${ }_{\text {major: }} 1.57(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), 2.06 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}$), 3.66 ($2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}$), $3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $5.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $15,2-\mathrm{H})$, 7.23-7.39 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $15,3-\mathrm{H})$; (4 Z)isomer ${ }_{\text {minor: }} 1.76(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{M} \mathrm{e}), 2.00(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}), 3.72(2 \mathrm{H}$, $\mathrm{s}, 6-\mathrm{H}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $5.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $15,2-\mathrm{H}), 7.23-$ $7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.47\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 15,3-\mathrm{H}\right)$; $\delta_{\mathrm{c}}(400$ $\left.\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right)(4 \mathrm{E})$-isomer ${ }_{\text {major: }} 13.8(\mathrm{q}), 18.6$ (q), $40.7(\mathrm{t}), 51.5$ (q), 117.3 (d), 127.2 (d), 128.8 (d), 129.3 (s), 131.9 (d), 135.4 (s), 139.0 (s), 143.1 (d) and 168.0 (s); (4Z)-isomer minor: 14.4 (q), 20.2 (q), 39.1 (t), 51.3 (q), 116.5 (d), 127.1 (d), 128.7 (d), 129.6 (s), 132.1 (d), 135.2 (s), 138.5 (s), 141.9 (d) and 167.9 (s); m/z 262 $\left(12 \%, M^{+}\right), 139$ (58) and 93 (100).

M ethyl 5-methyl-4-methylene-2-(phenylthio)hex-5-enoate 2a and (3E)-methyl 4,5-dimethyl-2-(phenylthio)hexa-3,5-dienoate 3a Yellow oil as a mixture of regioisomers (Found: $\mathrm{C}, 68.8 ; \mathrm{H}, 7.1$. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.\mathrm{C}, 68.67 ; \mathrm{H}, 6.92 \%\right) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1740$ ($\mathrm{C}=0$), 1155 ($\mathrm{C}-0$), 995 and 900 (viny)); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) $2 a_{\text {major: }} 1.88(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}$), $2.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5$ and $14,3-\mathrm{H}), 2.89$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and 14, $3-\mathrm{H}$), $3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $3.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5$ and 9, 2-H) , $4.99(2 \mathrm{H}, \mathrm{s}$, olefinic H), 5.03 and 5.16 (each $1 \mathrm{H}, \mathrm{s}$, olefinic H), 7.28-7.32 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.44-7.47 ($2 \mathrm{H}, \mathrm{m}$, ArH); 3a minor: 1.74 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), 1.88 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}$), 3.66 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), $4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10,2-\mathrm{H}$), 4.99 and 5.07 (each $1 \mathrm{H}, \mathrm{s}$, $6-\mathrm{H}), 5.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10,3-\mathrm{H}), 7.28-7.32(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.44-7.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3\right.$) $2 \mathrm{a}_{\text {major: }} 21.0$ (q), 36.2 (t), 49.9 (d), 52.0 (d), 113.0 (t), 115.1 (t), 128.0 (d), 128.9 (d), 133.1 (d), 133.2 (s), 141.7 (s), 143.6 (s) and 172.2 (s); $3 \mathrm{a}_{\text {minor }}$: 14.1 (q), 20.7 (q), 50.1 (d), 52.5 (q), 114.1 (t), 120.2 (d), 129.0 (d), 129.4 (d), 130.7 (d), 135.9 (s), 139.9 (s), 143.5 (s) and 170.9 (s); m/z $262\left(62 \%, \mathrm{M}^{+}\right), 93$ (72) and 43 (100).

4-Isopropenyl-4-methyl-2-phenylthio- γ-butyrolactone 10a

Oil as a $1: 1$ mixture of diastereoisomers (F ound: C, $67.55 ; \mathrm{H}$, 6.6. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 67.70 ; \mathrm{H}, 6.49 \%$); $v_{\text {max }}(\mathrm{NaCI}) / \mathrm{cm}^{-1}$ $1765(\mathrm{C}=0)$ and $1230(\mathrm{C}-0) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.44$ and 1.48 (each $3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me} \times 2$), 1.66 and 1.76 (each 3 H , s, vinylic
$\mathrm{Me} \times 2$), $2.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10$ and $13,3-\mathrm{H}), 2.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}), 2.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}), 2.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $10,2-\mathrm{H}), 4.04(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9$, $2-\mathrm{H}$) , 4.83, 4.87, 4.98 and 5.01 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2} \times 2$), 7.29-7.35 (total $6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.51-7.55 (total $4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 18.1$ and 18.7 (q), 25.6 and 26.2 (q), 39.6 and 40.2 (t), 45.7 and 45.9 (d), 83.5 and 85.4 (s), 111.0 and 111.1 (t), 128.2 and 128.4 (d), 128.8 and 129.1 (d), 129.2 and 132.3 (s), 132.4 and 133.0 (d), 145.1 and 146.0 (s) and 174.0 and 174.3 (s); m/z $248\left(74 \%, \mathrm{M}^{+}\right)$and 95 (100).

($2 \mathrm{E}, 4 \mathrm{E}$)- and ($2 \mathrm{E}, 4 \mathrm{Z}$)-M ethyl 4,5-dimethyl-6-(4-methylphenyl-thio)hexa-2,4-dienoate 4b

Yellow oil as a mixture of geometrical isomers (Found: C, 69.7; $\mathrm{H}, 7.4 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.\mathrm{C}, 69.53 ; \mathrm{H}, 7.29 \%\right) ; v_{\max }(\mathrm{NaCl}) /$ $\mathrm{cm}^{-1} 1715(\mathrm{C}=0), 1165$ and $1285(\mathrm{C}-0)$; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ (4E)-isomer ${ }_{\text {major: }} 1.53$ ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$ e, 2.05 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 2.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $3.60(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $5.79(1 \mathrm{H}$, d, J trans $16,2-\mathrm{H}$), 7.05 and 7.27 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}$) and 7.79 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 16,3-\mathrm{H}$); (4 Z)-isomer minor: $1.74(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), $1.98\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}\right.$), 2.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $3.68\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right.$), 3.71 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $5.65\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 15,2-\mathrm{H}\right), 7.03$ and 7.24 (each 2 $\mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH})$ and $7.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $15,3-\mathrm{H}) ; \delta_{\mathrm{c}}(400 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) (4E)-isomer ${ }_{\text {major: }} 13.8$ (q), 18.7 (q), 21.1 (q), 41.3 (t), 51.5 (q), 117.2 (d), 129.1 (s), 129.6 (d), 129.9 (s), 132.7 (d), 137.5 (s), 139.5 (s), 142.0 (d) and 167.9 (s); ($4 Z$)-isomer minor: 14.4 (q), 20.2 (q), 21.0 (q), 39.8 (t$), 51.3$ (q), 116.2 (d), 129.7 (s), 129.5 (d), 131.6 (s), 133.1 (d), 137.6 (s), 138.8 (s), 143.3 (d) and 168.1 (s); $\mathrm{m} / \mathrm{z} 276\left(25 \%, \mathrm{M}^{+}\right)$and 93 (100).

M ethyl 5-methyl-4-methylene-2-(4-methylphenylthio)hex-5-

 enoate 2 bYellow oil (Found: C, 69.7; H, 7.4\%); $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1735$ ($\mathrm{C}=0$), 1155 ($\mathrm{C}-0$), 995 and 900 (vinyl); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl}{ }_{3}\right.$) $1.87(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 2.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5$ and $14,3-\mathrm{H}), 2.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $14,3-\mathrm{H}), 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), $3.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5$ and 9, 2-H), $4.99(2 \mathrm{H}, \mathrm{s}$, olefinic H), 5.02 and 5.15 (each $1 \mathrm{H}, \mathrm{s}$, olefinic H) and 7.11 and 7.35 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, ArH); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 21.0$ (q), 21.1 (q), 36.2 (t), 50.2 (d), 52.0 (q), 113.0 (t$), 115.0$ (t$), 129.2$ (s$), 129.7$ (d), 133.8 (d), 138.4 (s), 141.7 (s), $143.8(\mathrm{~s})$ and $172.2(\mathrm{~s}) ; \mathrm{m} / \mathrm{z} 276\left(68 \%, \mathrm{M}^{+}\right)$and 190 (100).

4-I sopropenyl-4-methyl-2-(4-methylphenylthio)- γ-butyrolactone 10b

Light yellow oil as a 1:1 mixture of diastereoisomers (Found: $\mathrm{C}, 68.6 ; \mathrm{H}, 7.0 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68.67 ; \mathrm{H}, 6.92 \%$); $v_{\text {max }}$ $(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1765(\mathrm{C}=0)$ and $1230(\mathrm{C}-0) ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 1.43 and 1.48 (each $3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me} \times 2$), 1.59 and 1.66 (each $3 \mathrm{H}, \mathrm{s}$, vinylic $\mathrm{Me} \times 2$), 2.06 (1 H , dd, J 10 and $13,3-\mathrm{H}$), 2.27 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}$), 2.34 (total $6 \mathrm{H}, \mathrm{s}, \mathrm{ArM}$ e $\times 2$), 2.49 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}$), $2.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}$), $3.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and 10, 2-H), 3.97 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9,2-\mathrm{H}$), 4.83, 4.92, 4.98 and 5.03 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2} \times 2$) and 7.14 and 7.44 (each total $4 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 18.2$ and 18.8 (q), 21.2 and 21.1 (q), 25.8 and $26.3(q), 39.7$ and $40.3(\mathrm{t})$, 46.1 and 46.4 (d), 85.3 and 85.4 (s), 111.1 and 111.1 (t), 128.4 and 128.6 (s), 129.9 and 130.0 (d), 133.8 and 133.9 (d), 138.8 and 138.9 (s), 145.3 and 146.1 (s) and 174.2 and 174.5 (s); m / z $262\left(52 \%, \mathrm{M}^{+}\right)$and 95 (100).
($2 \mathrm{E}, 4 \mathrm{E}$)- and ($2 \mathrm{E}, 4 \mathrm{Z}$)-M ethyl 4,5-dimethyl-6-(3-methylphenyl-thio)hexa-2,4-dienoate 4c
Yellow oil as a mixture of geometrical isomers (Found: C, 69.8; $\mathrm{H}, 7.5 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.\mathrm{C}, 69.53 ; \mathrm{H}, 7.29 \%\right) ; v_{\text {max }}(\mathrm{NaCl}) /$ $\mathrm{cm}^{-1} 1715(\mathrm{C}=0)$, 1165 and $1285(\mathrm{C}-0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ (4E)-isomer ${ }_{\text {major: }} 1.60(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{M} \mathrm{e}), 2.06(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}), 2.29$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $3.64(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $5.81(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J}_{\text {trans }} 16,2-\mathrm{H}\right), 7.01-7.26(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans 16, $3-\mathrm{H}$); (4Z)-isomer minor: 1.75 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{M} \mathrm{e}$), $1.99(3 \mathrm{H}, \mathrm{s}$,

5-M e), $2.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}\right.$), $3.71\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 3.74(3 \mathrm{H}, \mathrm{s}$, OM e), $5.76\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 15,2-\mathrm{H}\right), 7.01-7.26(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.49\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 15,3-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)(4 \mathrm{E})$ isomer ${ }_{\text {major: }} 14.1(\mathrm{q}), 18.9(\mathrm{q}), 21.5(\mathrm{q}), 40.8(\mathrm{t}), 51.7(\mathrm{q}), 117.6$ (d), 128.2 (d), 128.8 (d), 128.9 (d), 129.0 (s), 129.8 (s), 132.5 (d), 138.8 (s), 138.9 (s), 143.4 (d) and 168.3 (s); (4Z)-isomer minor: 14.7 (q), 20.4 (q), 21.3 (q), 39.2 (t), 51.6 (q), 116.6 (d), 128.2 (d), 129.4 (d), 129.5 (d), 129.9 (s), 133.0 (d), 135.2 (s), 135.6 (s), 138.9 (s), 142.2 (d) and 168.1 (s); m/z 276 ($22 \%, \mathrm{M}^{+}$), 139 (79) and 93 (100).

M ethyl 5-methyl-4-methylene-2-(3-methylphenylthio)hex-5-

 enoate 2cYellow oil (Found: C, 69.7; H, 7.5\%) $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1735$ ($\mathrm{C}=0$), $1155(\mathrm{C}-\mathrm{O})$ and 995 and 900 (vinyl); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.87(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), $2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 2.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 5 and $14,3-\mathrm{H}), 2.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $14,3-\mathrm{H}), 3.62(3 \mathrm{H}, \mathrm{s}$, OM e), $3.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5$ and 9, 2-H), $4.99(2 \mathrm{H}, \mathrm{s}$, olefinic H), 5.03 and 5.15 (each $1 \mathrm{H}, \mathrm{s}$, olefinic H) and 7.03-7.34 ($4 \mathrm{H}, \mathrm{m}$, ArH); $\delta_{\mathrm{c}}(400 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3$) 21.0 (q), 21.1 (q), 36.3 (t), 49.9 (d), 52.0 (q), 113.0 (t), 115.1 (t), 128.7 (d), 128.8 (d), 129.9 (d), 132.9 (s), 133.5 (d), 138.6 (s), 141.7 (s), 143.6 (s) and 172.3 (s$) ; \mathrm{m} / \mathrm{z} 276$ ($74 \%, \mathrm{M}^{+}$), 175 (92) and 190 (100).

4-I sopropenyl-4-methyl-2-(3-methyIphenylthio)- γ-butyrolactone

 10cLight yellow oil as a 1:1 mixture of diastereoisomers (Found: $\mathrm{C}, 68.7 ; \mathrm{H}, 7.1 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ require $\mathrm{C}, 68.67 ; \mathrm{H}, 6.92 \%$); $v_{\text {max }}$ $(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1765(\mathrm{C}=0)$ and $1230(\mathrm{C}-0) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; CDCl_{3}) 1.45 and 1.48 (each $3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me} \times 2$), 1.67 and 1.77 (each $3 \mathrm{H}, \mathrm{s}$, vinylic $\mathrm{Me} \times 2$), $2.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}$), $2.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}), 2.33$ and 2.34 (each $3 \mathrm{H}, \mathrm{s}$, ArM ex 2), $2.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}), 2.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}), 3.90(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9,2-\mathrm{H}), 4.04(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9,2-\mathrm{H})$, 4.83, 4.87, 5.00 and 5.02 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2} \times 2$) and 7.12 7.34 (total $8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 18.1$ and 18.7 (q), 21.1 and 21.1 (q), 25.6 and $26.2(q), 39.6$ and $40.2(\mathrm{t}), 45.8$ and 45.9 (d), 85.3 and $85.4(\mathrm{~s}), 111.0$ and $111.0(\mathrm{t}), 128.9$ and 129.0 (d), 129.0 and 129.1 (d), 129.9 and 129.9 (d), 132.0 and 132.2 (s), 133.4 and 133.5 (d), 138.9 and 138.9 (s), 145.1 and 146.0 (s) and 174.2 and 174.4 (s); m/z 262 (57\%, M ${ }^{+}$), 95 (100).

($2 \mathrm{E}, 4 \mathrm{E}$)- and ($2 \mathrm{E}, 4 \mathrm{Z}$)-M ethyl 6-(4-chlorophenylthio)-4,5dimethylhex a-2,4-dienoate 4d

Yellow oil as a mixture of geometrical isomers (Found: C, 60.7; $\mathrm{H}, 5.8 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClO}_{2} \mathrm{~S}$ requires $\left.\mathrm{C}, 60.70 ; \mathrm{H}, 5.77 \%\right) ; v_{\text {max }}(\mathrm{NaCl}) /$ $\mathrm{cm}^{-1} 1710(\mathrm{C}=0)$, 1165 and $1280(\mathrm{C}-0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ (4E)-isomer ${ }_{\text {major: }} 1.58$ (3 H, s, 4-M e), 2.06 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}$), 3.63 ($2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), 5.82 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $15,2-\mathrm{H}$), 7.23 and 7.29 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH})$ and $7.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans 15 , $3-\mathrm{H}$); (4Z)-isomer ${ }_{\text {minor: }} 1.76$ (3 H, s, 4-M e), 1.99 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}$), $3.70(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}\right.$ e), $5.70\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 15\right.$, 2-H), 7.19 and 7.27 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}$) and $7.35(1 \mathrm{H}, \mathrm{d}$, $\left.J_{\text {trans }} 15,3-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)(4 \mathrm{E})$-isomer ${ }_{\text {major: }} 13.8$ (q), 18.5 (q), 40.8 (t), 51.5 (q), 117.5 (d), 128.9 (d), 129.4 (s), 133.2 (d), 133.3 (s), 133.8 (s), 138.5 (s), 142.9 (d) and 167.9 (s); (4Z)isomer ${ }_{\text {minor: }} 14.4$ (q), 20.1 (q), 39.3 (t), 51.4 (q), 116.5 (d), 128.8 (d), 129.8 (s), 133.6 (s), 133.9 (d), 135.7 (s), 138.1 (s), 141.5 (d) and 167.7 (s); m/z $296\left(9 \%, \mathrm{M}^{+}\right), 93$ (95) and 43 (100).

M ethyl 2-(4-chlorophenylthio)-5-methyl-4-methylenehex-5enoate 2d and (3E)-methyl 2-(chlorophenylthio)-4,5-dimethyl-hexa-3,5-dienoate 3d

Yellow oil as a mixture of regioisomers (Found: C, 60.6; H, 5.8%); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1735(\mathrm{C}=0)$, 1155 ($\mathrm{C}-\mathrm{O}$) and 900 (vinyl); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 2d d major: 1.88 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}$), 2.73 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6$ and 14, 3-H), 2.86 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and 14, 3-H), 3.63 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $3.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6$ and $9,2-\mathrm{H}$) , $5.00(2 \mathrm{H}, \mathrm{s}$, olefinic H), 5.02 and 5.17 (each 1 H , s, olefinic H) and 7.27 and 7.37 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}$); $3 \mathrm{~d}_{\text {minor }} 1.76$ ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), 1.88 (3

H, s, 5-M e), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.58 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10,2-\mathrm{H}$), 5.02 and 5.09 (each $1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 5.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10,3-\mathrm{H})$ and 7.27 and 7.37 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{MHz} \mathrm{CDCl}_{3}\right) \mathbf{2 d} \mathrm{d}_{\text {major }}$: 21.0 (q), 36.1 (t), 49.9 (d), 52.1 (q), 113.1 ($t), 115.4$ (t$), 129.1$ (d), 131.6 (s), 134.4 (d), 135.0 (s), 141.6 (s), 143.4 (s) and 172.2 (s); $3 \mathrm{~d}_{\text {minor: }} 14.1$ (q), 20.7 (q), 50.1 (d), 52.5 (q), 114.1 (t), 120.2 (d), 129.0 (d), 129.4 (s), 130.7 (s), 135.9 (s), 139.9 (s), 143.5 (s) and 170.9 (s); m/z 296 ($15 \%, \mathrm{M}^{+}$) and 93 (100).

2-(4-C hlorophenylthio)-4-isopropenyl-4-methyl- γ-butyrolactone

 10dYellow oil as a 1:1 mixture of diastereoisomers (Found: M^{+}, 282.0461. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}_{2} \mathrm{~S}$ requires $\mathrm{M}, 282.0481$); $v_{\max }(\mathrm{NaCl}) /$ $\mathrm{cm}^{-1} 1765(\mathrm{C}=0)$ and $1235(\mathrm{C}-0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}_{\mathrm{CDCl}}^{3}\right.$) 1.48 and 1.49 (each $3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me} \times 2$), 1.70 and 1.78 (each $3 \mathrm{H}, \mathrm{s}$, vinylic $\mathrm{Me} \times 2$), $2.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}), 2.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 9 and $13,3-\mathrm{H}), 2.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}), 2.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 9 and $13,3-\mathrm{H}), 3.87(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9,2-\mathrm{H}), 3.99(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9,2-\mathrm{H})$, 4.86, 4.89, 5.00 and 5.02 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2} \times 2$) and 7.30 and 7.49 (each total $4 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 18.3$ and $18.8(q), 25.8$ and $26.3(q), 39.6$ and $40.2(\mathrm{t}), 45.8$ and 46.1 (d), 85.6 and 91.1 (s), 111.2 and 111.3 (t), 128.7 and 129.2 (d), 129.3 and 130.0 (d), 130.8 and 131.0 (s), 134.6 and 134.7 (s), 145.0 and 145.9 (s) and 174.0 and 174.2 (s); m/z 282 ($52 \%, \mathrm{M}^{+}$) and 95 (100).
($2 \mathrm{E}, 4 \mathrm{E}$)-M ethyl 4-methyl-6-(phenylthio)hexa-2,4-dienoate 4e Yellow oil (Found: $\mathrm{C}, 67.8$; $\mathrm{H}, 6.7 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 67.71$; $\mathrm{H}, 6.49 \%) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1720(\mathrm{C}=0), 1170$ and $1270(\mathrm{C}-\mathrm{O})$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.62(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}), 3.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, $6-\mathrm{H}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $5.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $15,2-\mathrm{H}), 5.96(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}, 5,5 \mathrm{H}), 7.21-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.28\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 15\right.$, $3-\mathrm{H}) ; \delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 11.9$ (q), 32.8 (t), 51.4 (q), 116.9 (d), 126.9 (d), 128.8 (d), 131.1 (d), 135.0 (s), 135.1 (s), 135.2 (d), 148.5 (d) and 167.5 (s); m/z 248 ($49 \%, \mathrm{M}^{+}$) and 79 (100).

M ethyl 4-methylene-2-(phenylthio)hex-5-enoate 2 e and (3E)- and (3 Z)-methyl 4-methyl-2-(phenylthio)hexa-3,5-dienoate 3e

Light yellow oil as a mixture of isomers (Found: C, 67.8; H, $6.7 \%) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1740(\mathrm{C}=0), 1155(\mathrm{C}-\mathrm{O})$ and 995 and 915 (vinyl); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 2e: 2.67 ($1 \mathrm{H}, \mathrm{dd}$, J 5 and 15 , 3-H), 2.83 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10$ and 15, 3-H), 3.62 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.88 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5$ and 10, 2-H), 5.06 and 5.09 (each $1 \mathrm{H}, \mathrm{s}, 4-$ methylene), $5.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ cis $10,6-\mathrm{H}), 5.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans 17 , $6-\mathrm{H}), 6.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10$ and $17,5-\mathrm{H}), 7.25-7.30(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.44-7.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); (E)-3e: 1.65 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{M} \mathrm{e}$), 3.66 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $4.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10,2-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ cis $10,6-\mathrm{H})$, $5.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $17,6-\mathrm{H}), 5.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10,3-\mathrm{H}), 6.33(1 \mathrm{H}$, dd, J 10 and 17, 5-H), 7.25-7.30 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.44-7.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); (Z)-3e: 1.85 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), 3.64 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), $4.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10,2-\mathrm{H}), 5.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ cis $10,6-\mathrm{H}), 5.29(1 \mathrm{H}, \mathrm{d}$, $\left.J_{\text {trans }} 17,6-H\right), 5.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10,3-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10$ and 17, 5-H) , 7.25-7.30 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.44-7.47 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{c}}\left(400 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 11.9$ (q), 19.7 (q), 33.8 (t), 48.6 (d), 49.4 (d), 49.9 (d), 52.0 (q), 52.3 (q), 52.4 (q), 113.8 (t), 113.9 (t), 116.7 (t), 118.4 (t), 122.5 (d), 124.8 (d), 127.6 (d), 128.1 (d), 128.3 (d), 128.4 (s), 128.5 (d), 128.8 (d), 128.9 (d), 132.2 (d), 132.3 (s), 132.9 (s), 133.2 (d), 134.1 (d), 134.4 (d), 136.9 (s), 137.8 (d), 138.2 (s), 140.0 (d), 142.0 (s), 170.7 (s), 170.8 (s) and 172.1 (s); m/z $248\left(48 \%, \mathrm{M}^{+}\right)$and 79 (100).

4-M ethyl-2-phenylthio-4-vinyl- γ-butyrolactone 10e

Light yellow oil as a $1: 1$ mixture of diastereoisomers (Found: $\mathrm{C}, 66.85 ; \mathrm{H}, 6.25 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 66.64 ; \mathrm{H}, 6.02 \%$); $v_{\text {max }}$ $(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1770(\mathrm{C}=0)$ and $1225(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.45$ and 1.49 (each $3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me} \times 2$), $2.08(1 \mathrm{H}, \mathrm{dd}$, J 11 and $13,3-\mathrm{H}), 2.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}), 2.55(1 \mathrm{H}, \mathrm{dd}$, J 9 and $13,3-\mathrm{H}), 2.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and $13,3-\mathrm{H}), 3.95(1 \mathrm{H}$, dd, J 9 and $11,2-\mathrm{H}), 4.03(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9,2-\mathrm{H}), 5.13$ and 5.15 (each 1 $\mathrm{H}, \mathrm{d}, \mathrm{J}$ cis $11, \mathrm{CH}=\mathrm{CH}_{2} \times 2$), 5.26 and 5.29 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 17$,
$\mathrm{CH}=\mathrm{CH}_{2} \times 2$), 5.84 and 5.89 (each 1 H , dd, J 11 and 17 , $\mathrm{CH}=\mathrm{CH}_{2} \times 2$), 7.27-7.34 (total $6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.53-7.56 (total $4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 26.6$ and 26.9 (q), 41.0 and 41.4 (t), 45.8 and 45.9 (d), 83.2 and 83.4 (s), 114.1 and 114.5 (t), 128.3 and 128.4 (d), 129.2 and 129.2 (d), 132.2 and 132.7 (s), 133.0 and 133.2 (d), 139.5 and 140.1 (d) and 174.4 and 174.4 (s); m/z 234 ($33 \%, \mathrm{M}^{+}$) and 43 (100).

($2 \mathrm{E}, 4 \mathrm{E}$)- and ($2 \mathrm{E}, 4 \mathrm{Z}$)-4,5-D imethyl-6-(phenylthio)hexa-2,4dienonitrile 4 g

Yellow oil as a mixture of geometric isomers (Found: C, 73.2; $\mathrm{H}, 6.7$; N, 6.05. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NS}$ requires C, 73.32; H , 6.59; N, 6.11\%); $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2220(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)(4 \mathrm{E})$ isomer ${ }_{\text {major: }} 1.51$ ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{M} \mathrm{e}$), 2.03 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}$), $3.64(2 \mathrm{H}, \mathrm{s}$, $\left.6-\mathrm{H}_{2}\right), 5.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $16,2-\mathrm{H}), 7.26-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.49\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 16,3-\mathrm{H}\right)$; (4Z)-isomer minor: $1.71(3 \mathrm{H}, \mathrm{s}$, 4-M e), $2.02(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}$), $3.64(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans 16, 2-H), $6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $16,3-\mathrm{H})$ and 7.26-7.39 ($5 \mathrm{H}, \mathrm{m}$, ArH); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right)(4 \mathrm{E})$-isomer ${ }_{\text {major: }} 13.0$ (q), 20.3 (q), 39.4 (t), 95.4 (d), 118.9 (s), 127.5 (d), 128.9 (d), 129.1 (s$), 133.0$ (d), 135.0 (s), 139.9 (s) and 148.7 (d); (4Z)-isomer minor: 13.6 (q), 18.6 (q), 40.7 (t), 94.3 (d), 119.0 (s), 128.0 (d), 128.8 (s$), 132.2$ (d), 134.4 (s), 138.9 (d), 140.4 (s) and 147.3 (d); m/z 229 (62\%, M^{+}), 120 ($78, \mathrm{M}^{+}$- SPh), 110 (100) and 93 (92).

5-M ethyl-4-methylene-2-(phenylthio)hex-5-enonitrile 2 g

Light yellow oil (Found: C, 73.2; H, 6.7; N, 6.05\%); $v_{\text {max }}$ (NaCl)/cm ${ }^{-1} 2235$ (CN) and 900 (vinyl); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) $1.91(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}), 2.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10$ and $14,3-\mathrm{H}), 2.86(1 \mathrm{H}$, dd, J 5 and $14,3-\mathrm{H}$), 3.90 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5$ and 10, 2-H), 4.95, 5.04, 5.17 and 5.30 (each $1 \mathrm{H}, \mathrm{s}$, olefinic H$), 7.36-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.60-7.63(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 20.8(\mathrm{q})$, 36.2 (d), 37.1 (t), 113.0 (t), 116.9 (t$), 118.7$ (s), 129.2 (d), 129.4 (d), 130.3 (s), 134.5 (d), 141.0 (s) and 141.6 (s); m/z 229 (33\%, M^{+}) and 43 (100).

($2 \mathrm{E}, 4 \mathrm{E}$)- and ($2 \mathrm{E}, 4 \mathrm{Z}$)-6-(4-C hlorophenylthio)-4,5-dimethylhexa-2,4-dienonitrile 4h

Yellow oil as a mixture of geometric isomers (Found: M^{+} 263.0521. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{C}$ IN s requires $\mathrm{M}, 263.0535$); $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1}$ 2225 (CN); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right)(4 \mathrm{E})$-isomer major: $1.54(3 \mathrm{H}, \mathrm{s}$, $4-\mathrm{M} \mathrm{e}), 2.02(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}), 3.62\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 5.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $16,2-\mathrm{H}), 7.25$ and 7.28 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J}, \mathrm{B}, \mathrm{ArH}$) and $7.48(1 \mathrm{H}, \mathrm{d}$, $\left.J_{\text {trans }} 16,3-\mathrm{H}\right)$; $(4 \mathrm{Z})$-isomer minor: $1.72(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{M} \mathrm{e}), 2.00(3 \mathrm{H}$, s, $5-\mathrm{Me}$), $3.62(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 5.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $16,2-\mathrm{H}), 7.04$ (1 $\mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $16,3-\mathrm{H}$) and 7.25 and 7.30 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz;} \mathrm{CDCI}{ }_{3}\right)(4 \mathrm{E})$-isomer ${ }_{\text {major: }} 13.1$ (q), 18.6 (q), 40.8 (t), 95.7 (d), 118.9 (s), 129.0 (d), 129.4 (s), 133.4 (d), 133.5 (s), 133.7 (s), 139.9 (s) and 148.4 (d); (4Z)-isomer minor: 13.6 (q), 20.03 (q), 39.3 (t), 94.7 (d), 118.7 (s), 129.0 (d), 130.9 (s), 132.9 (s), 134.1 (d), 134.2 (s), 139.4 (s) and 147.0 (d); m/z 263 ($22 \%, \mathrm{M}^{+}$), $120\left(33, \mathrm{M}^{+}-\mathrm{CIC}_{6} \mathrm{H}_{4} \mathrm{~S}\right)$ and 43 (100).

2-(C hlorophenylthio)-5-methyl-4-methylenehex-5-enonitrile 2 h

Light yellow oil (Found: $\mathrm{M}^{+}, 263.0557$); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2245$ (CN) and 900 (vinyl); $\delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz;} \mathrm{CDCI} 3$) $1.92(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), $2.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10$ and $14,3-\mathrm{H}), 2.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6$ and 14 , $3-\mathrm{H}$), 3.88 (1 H , dd, J 6 and 10, 2-H), 4.97, 5.06, 5.17 and 5.31 (each $1 \mathrm{H}, \mathrm{s}$, olefinic H) and 7.36 and 7.55 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, ArH); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 20.9$ (q), 36.4 (d), 37.2 (t), 113.2 (t), 117.2 (t), 118.6 (s), 128.8 (s), 129.6 (d), 136.1 (d), 136.2 (s), 141.2 (s) and 141.6 (s); m/z 263 ($38 \%, \mathrm{M}^{+}$) and 43 (100).

($2 \mathrm{E}, 4 \mathrm{E}$)-4-M ethyl-6-(phenylthio)hexa-2,4-dienonitrile 4i

Yellow oil (Found: M^{+}215.0751. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NS}$ requires M , 215.0769); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2215(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ $1.57\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}\right.$), $3.64\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8,6-\mathrm{H}_{2}\right), 5.23\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }}\right.$ $17,2-\mathrm{H}), 5.94(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8,5-\mathrm{H}), 6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $17,3-\mathrm{H})$ and 7.25-7.38 (5 H, m, ArH); $\delta_{c}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 11.2$ (q), 32.9 (t), 95.2 (d), 118.3 (s), 127.2 (d), 129.0 (d), 129.5 (s), 131.5 (d),
134.6 (s), 136.3 (d) and 153.9 (d); m/z $215\left(76 \%, \mathrm{M}^{+}\right)$, 106 (33, M^{+}- PhS), 110 (93) and 79 (100).
($2 \mathrm{E}, 4 \mathrm{E}$) -4-M ethyl-6-(phenylthio)hexa-2,4-dienonitrile 4 i
Yellow oil (Found: M^{+}, 215.0751. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NS}$ requires M , 215.0769); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2215(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ $1.57(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{M} \mathrm{e}), 3.64\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8,6-\mathrm{H}_{2}\right), 5.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $17,2-\mathrm{H}), 5.94(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8,5-\mathrm{H}), 6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ trans $17,3-\mathrm{H})$ and $7.25-7.38$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right.$) 11.2 (q), 32.9 (t), 95.2 (d), 118.3 (s), 127.2 (d), 129.0 (d), 129.5 (s), 131.5 (d), 134.6 (s), 136.3 (d) and 153.9 (d); m/z 215 ($76 \%, \mathrm{M}^{+}$), 106 (33 , $\mathrm{M}^{+}-\mathrm{PhS}$), 110 (93) and 79 (100).

($2 \mathrm{E}, 4 \mathrm{Z}$)-M ethyl 4,5-bis(4-chlorophenyl)-6-(phenylthio)hexa-2,4-dienoate 14

Pale yellow oil (Found: $\mathrm{C}, 65.7$; $\mathrm{H}, 4.6 . \mathrm{C}_{25} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, 65.94; H, 4.43\%); $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1720(\mathrm{C}=0), 1170$ and 1285 (C-O); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 3.70$ (2 $\mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 5.28$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\text {trans }} 16,2-\mathrm{H}$), 6.96 and 7.38 (each 2 H , d, J 8, 4-A rH), 7.07-7.10 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SPh}$), 7.17-7.19 (3 H, m, SPh), 7.25 and 7.32 (each $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8,5-\mathrm{ArH}$) and $7.42(1 \mathrm{H}, \mathrm{d}$, $J_{\text {trans }} 16,3-\mathrm{H}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 41.2$ (t$), 51.5(\mathrm{q}), 122.7$ (d), 127.1 (d), 128.7 (d), 128.8 (d), 128.9 (d), 130.7 (d), 130.9 (d), 131.4 (d), 133.8 (s), 134.4 (s), 135.1 (s), 135.4 (s), 137.0 (s), 137.7 (s), 143.9 (d), 144.2 (s) and 167.2 (s); m/z 454 ($41 \%, \mathrm{M}^{+}$), 346 (76), 345 ($66, \mathrm{M}^{+}-\mathrm{PhS}$), 285 (77) and 215 (100).

M ethyl 4,5-bis(4-chlorophenyl)-2-(phenylthio)hexa-2,4-dienoate 15

Yellow oil (Found, 65.7; H, 4.55. $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C , $65.94 ; \mathrm{H}, 4.43 \%) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1735(\mathrm{C}=0)$ and 1235 ($\mathrm{C}-\mathrm{O}$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.05\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{3}\right), 3.49(3 \mathrm{H}, \mathrm{s}$, OM e), $6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 16, \mathrm{ArH}), 7.14-7.36(11 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.62 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 22.5$ (q), 52.6 (q), 126.0 (d), 126.4 (s), 128.0 (d), 128.4 (d), 128.5 (d), 128.6 (d), 130.2 (d), 131.2 (d), 133.0 (s), 134.0 (s), 134.1 (s), 136.0 (s), 138.1 (s), 140.4 (s), 144.7 (s), 146.3 (d) and 166.6 (s); m/z 454 (47%, M^{+}), 422 (66), 285 (67), 250 (69) and 215 (100).

4-M ethyl-2-(3-methyl-2-methylenebut-3-enyl)-2H-1,4-benzothiazin-3(4H)-one 17 and 2-(2,3-dimethylbuta-1,3-dienyl)-4-methyl-2H-1,4-benzothiazin-3(4H)-one 18
Yellow oil as a mixture of compound $\mathbf{1 7}$ and $\mathbf{1 8}$ (Found: C, 69.5; $\mathrm{H}, 6.7 ; \mathrm{N}, 5.4 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N} \mathrm{OS}$ requires C , 69.46; $\mathrm{H}, 6.61 ; \mathrm{N}$, $5.40 \%) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1665(\mathrm{C}=0)$ and 900 (vinyl); $\delta_{\mathrm{H}}(270$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 17: $1.91\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}_{3}\right), 2.37$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9$ and 14 , $1^{\prime}-\mathrm{H}$), 2.98 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5$ and $\left.14,1^{\prime}-\mathrm{H}\right), 3.45(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me})$, $3.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5$ and 9, 2-H), 4.92, 5.01 and 5.20 (each 1 H , s, olefinic H), 7.02-7.10 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.25-7.38 ($2 \mathrm{H}, \mathrm{m}$, ArH) ; 18: 1.84 and 1.94 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Mex}$), $3.47(3 \mathrm{H}, \mathrm{s}$, $4-\mathrm{Me}$), $4.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9,2-\mathrm{H}), 4.98$ and 5.11 (each $1 \mathrm{H}, \mathrm{s}$, 4'-H), 5.73 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9,1^{\prime}-\mathrm{H}\right) .7 .02-7.10(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.25-7.38 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 17: 21.1 (q), 32.4 (q), 33.8 (t), 42.3 (d), 113.3 (t), 115.8 (t), 117.1 (d), 117.3 (d), 121.6 (s), 127.1 (d), 128.9 (d), 138.3 (s), 141.6 (s), 143.2 (s) and 167.2 (s); 18: 14.5 (q), 20.7 (q), 32.6 (q), 41.4 (d), 113.8 (t), 117.5 (d), 119.1 (d), 122.7 (s), 123.4 (d), 127.2 (d), 128.6 (d), 139.9 (s), 140.7 (s), 143.8 (s) and 166.6 (s); m/z 259 ($100 \%, \mathrm{M}^{+}$).

2-(2,3-D imethylbut-2-enylidene)-4-methyl-2H-1,4-benzothiazin-3(4H)-one 19
Yellow oil (Found: C, 69.55; H, 6.7; N, 5.5\%); $v_{\text {max }}(\mathrm{NaCl}) /$ $\mathrm{cm}^{-1} 1665(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.72,1.81$ and 1.87 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Mex} 3$), $3.50(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), 7.00-7.04 ($2 \mathrm{H}, \mathrm{m}$, ArH), 7.17-7.26 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.53\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 17.3 (q), 20.7 (q), 22.1 (q), 32.5 (q), 116.5 (d), 119.3 (s), 120.7 (s), 123.1 (d), 124.7 (s), 126.2 (d), 126.6 (d), 135.3 (s), 137.8 (s), 138.3 (d) and 162.8 (s); m/z $259\left(42 \%, M^{+}\right)$ and 202 (100).

Reaction of alicyclic ester 1 c with $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in the presence of $\mathrm{m}-\mathrm{M} \mathrm{eC}_{6} \mathrm{H}_{4} \mathrm{SH}$ (see E ntry 10, Table 2)
A mixture of cyclopropanecarboxylate $\mathbf{1 c}(111 \mathrm{mg}, 0.4 \mathrm{mmol})$, p -TsOH $\cdot \mathrm{H}_{2} \mathrm{O}(8 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{m}-\mathrm{M} \mathrm{eC}_{6} \mathrm{H}_{4} \mathrm{SH}(5 \mathrm{mg}, 0.04$ mmol) in benzene ($2 \mathrm{~cm}^{3}$) was refluxed under nitrogen for 8 h The cooled reaction mixture was poured into saturated aq. $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ and the organic layer was separated. The water layer was extracted twice with EtOAc ($5 \mathrm{~cm}^{3}$). The organic layer and the extracts were combined, washed with water ($10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was separated by PLC on silica gel with hexane-EtOA c ($10: 1 \mathrm{v} / \mathrm{v}$) to give $6 \mathrm{mg}(5 \%)$ of open-chain ester $\mathbf{2 c}$ as the first fraction, 92 mg (83%) of isomer $\mathbf{4 c}$ as the second fraction and $4 \mathrm{mg}(4 \%)$ of lactone $\mathbf{1 0 c}$ as the third fraction.

Cross-over experiment of compounds 1 a and 1 h with p -TsOH•H2 O (see Scheme 7)

A mixture of vinylcyclopropyl sulfides 1a ($131 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1 h ($132 \mathrm{mg}, 0.5 \mathrm{mmol}$) and p-TsOH $\cdot \mathrm{H}_{2} \mathrm{O}(19 \mathrm{mg}, 0.1 \mathrm{mmol})$ in benzene ($5 \mathrm{~cm}^{3}$) was refluxed under nitrogen for 20 h . The cooled reaction mixture was poured into saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and the organic layer was separated. The water layer was extracted twice with EtOAc ($10 \mathrm{~cm}^{3}$). The organic layer and the extracts were combined, washed with water ($15 \mathrm{~cm}^{3}$), dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was separated by PLC on silica gel with hexane-EtOAc ($10: 1 \mathrm{v} / \mathrm{v}$) to give a mixture of products $2 \mathrm{a}, \mathbf{2 h}$ and $\mathbf{3 a}(92 \mathrm{mg})\left(\mathbf{2 a}: \mathbf{2 h}: \mathbf{3 a}=25: 13: 6\right.$ estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy) as the first fraction, a mixture of esters $\mathbf{4 a}$ and $\mathbf{4 d}$ (69 mg) ($4 \mathrm{a}: 4 \mathrm{~d}=23: 9$ estimated by ${ }^{1} \mathrm{H}$ N M R spectroscopy) as the second fraction, a mixture of nitriles 4 g and $4 \mathrm{~h}(40 \mathrm{mg})$
($\mathbf{4 g}: \mathbf{4 h}=9: 11$ estimated by ${ }^{1} \mathrm{H}$ N M R spectroscopy) as the third fraction and 8 mg of lactone 10 a as the fourth fraction.

Reaction of acyclic sulfide 3a with p -TsO H $\cdot \mathrm{H}_{2} \mathrm{O}$ (see Scheme 8)

A mixture of sulfide 3a including a trace amount of isomer 2a ($14 \mathrm{mg}, 0.053 \mathrm{mmol}$, obtained from the reaction of cyclopropanecarboxylate la with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, entry 6 in Table 1) and p -TsOH $\cdot \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mg})$ in benzene ($1.5 \mathrm{~cm}^{3}$) was refluxed under nitrogen for 8 h . The cooled reaction mixture was poured into saturated aq. $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ and the organic layer was separated. The water layer was extracted twice with EtOAc ($6 \mathrm{~cm}^{3}$). The organic layer and the extracts were combined, washed with water ($8 \mathrm{~cm}^{3}$), dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was separated by PLC on silica gel with hexane-EtOA c $(10: 1 \mathrm{v} / \mathrm{v})$ to give 13 mg of rearrangement product 4a (93\%) and a trace amount of starting material 3a.

Reaction of compound 2a with p-TsOH-H ${ }_{2} \mathrm{O}$ (see Scheme 9)

A mixture of sulfide 2 a ($131 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) in benzene ($2,5 \mathrm{~cm}^{3}$) was refluxed under nitrogen for 20 h . The cooled reaction mixture was poured into saturated aq. $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ and the organic layer was separated. The water layer was extracted twice with EtOAc $\left(5 \mathrm{~cm}^{3}\right)$. The organic layer and the extracts were combined, washed with water ($10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was separated by PLC on silica gel with hexane-EtOAc ($10: 1 \mathrm{v} / \mathrm{v}$) to give $72 \mathrm{mg}(55 \%)$ of a mixture of isomers 2a and 3 a ($3: 2$, estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy)
as the first fraction, 38 mg (29%) of rearrangement product $\mathbf{4 a}$ as the second fraction and $5 \mathrm{mg}(4 \%)$ of lactone 10a as the third fraction.

Acknowledgements

This work was supported in part by a Grant-in A id for Scientific Research from the M inistry of Education, Science, Sports and Culture, J apan.

R eferences

1 B. M. Trost, Top. Curr. Chem., 1986, 133, 3; A. K rief, Top. Curr. Chem., 1987, 135, 1; J. R. Y. Salaün, Top. Curr. C hem., 1988, 144, 1; H.-U. Reissig, Top. Curr. Chem., 1988, 144, 73; I. K uwajima and E. Nakamura, Top. Curr. Chem., 1990, 155, 1; R. R. K ostikov, A. P. M olchanov and H. Hopf, Top. Curr. Chem., 1990, 155, 41; H.-U. Reissig, in The Chemistry of the Cyclopropyl Group, ed. Z. R appoport, Wiley, N ew York, 1987, part 1, p. 375; J. R. Y. Salaün, in The Chemistry of the Cyclopropyl Group, ed. Z. R appoport, Wiley, N ew York, 1987, part 2, p. 809; H. N. C. Wong, M .-Y. Hou, C.-W. Tsu, Y.-C. Y ip, J. Tanko and T. H udlicky, Chem. Rev., 1989, 89, 165; V. Nair, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. F leming, Pergamon Press, Oxford, 1991, vol. 4, p. 999.

2 T. Hudlicky, T. M. K utchan and S. M. N aqvi, Org. React., 1985, 33, 247; Z. G oldschmidt and B. Crammer, Chem. Soc. Rev., 1988, 17, 229; T. H udlicky and J. W. R eed, in C omprehensive Organic Synthesis, ed. B. M. Trost and I. F leming, Pergamon Press, Oxford, 1991, vol. 5, p. 899; J. J. Bronsonand and R. L. Danheiser, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 5, p. 1006.
3 (a) H. Ishibashi, Y. K itano, H. N akatani, M . Okada, M . Okura and Y. Tamura, Tetrahedron Lett., 1984, 25, 4231; (b) H. Ishibashi, M . Okada, H. N akatani and M . Ikeda, J. Chem. Soc., Perkin Trans. 1, 1986, 1763; (c) H . Ishibashi, H . N akatani, D. J. Choi, M . Taguchi and M . Ikeda, Chem. P harm. Bull., 1990, 38, 1738
4 (a) L. Crombie, J. Crossley and D. A. M itchard, J. Chem. Soc., 1963, 4957; (b) Y. M orizawa, T. H iyama and H . N ozaki, Tetrahedron Lett., 1981, 22, 2297; (c) Y. M orizawa, T. Hiyama, K. Oshima and H. N ozaki, Bull. Chem. Soc. J pn., 1984, 57, 1123; (d) D. A. Otieno, G. Pattenden and C. R. Popplestone, J. C hem. Soc., Perkin Trans. 1, 1977, 196; (e) L. Crombie, P. A . F irth, R . P. H oughton, D. A. Whiting and D. K. Woods, J. Chem. Soc., Perkin Trans. 1, 1972, 642; (f) G. Suzukamo, M. Fukao and M. Tamura, Tetrahedron L ett., 1984, 25, 1595; (g) Z. Goldschmidt and B. Crammer, J. Chem. Soc., Perkin Trans. 1, 1984, 2697; (h) N. F. Elmore, J. E. Roberts and G. H. Whitham, J. Chem. Res. (S) , 1985, 98.

5 T. K ataoka, H. M atsumoto, T. I wama and H. Shimizu, Chem. Lett., 1995, 459.
6 S. A pparao, S. S. Bhattacharjee, H. Ila and H. Junjappa, J. Chem. Soc., Perkin Trans. 1, 1985, 641
7 T. K ataoka, Y. N akamura, H. M atsumoto, T. Iwama, K . K ondo, H. Shimizu, O. M uraoka and G. Tanabe, J. Chem. Soc., Perkin Trans. 1, 1997, 309.
8 E. Pretsch, T. Clerc, J. Seibl and W. Simon, translated by K. Biemann, in Tables of Spectral Data for Structure Determination of Organic Compounds, ed. W. Fresenius, J. F. K. Huber, E. Pungor, G. A. Rechnitz, W. Simon and T. S. West, Springer-Verlag, N ew York, 1989, H 215.
9 J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734; J. E. Baldwin, J. Cutting, W. Dupont, L. K ruse, L. Silberman and R. C. Thomas, J. Chem. Soc., C hem. C ommun., 1976, 736.

Paper 6/06579A
R eceived 25th September 1996
A ccepted 21st N ovember 1996

